10-25241-stomaeduj-2021-81-art-4abstract

COMPUTERIZED DENTAL PROSTHETICS

EFFECT OF DIGITAL WORKFLOW ON THE MARGINAL FIT OF LONG-SPAN IMPLANT-SUPPORTED BARS FOR KENNEDY II CLASS REMOVABLE PROSTHESES IN VITRO

DOI: https://doi.org/10.25241/stomaeduj.2021.8(1).art.4

Aristeidis Villias1a* , Triantafillos Papadopoulos2b , Nick Polychronakis1c , Hercules Karkazis1d , Gregory Polyzois1e

1Department of Prosthodontics, School of Dentistry, National and Kapodistrian University of Athens, Athens, Greece
2Department of Biomaterials, School of Dentistry, National and Kapodistrian University of Athens, Athens, Greece

aClinical Instructor, DDS, MSc, Dr. Med. Dent; e-mail: Aristeidis.Villias@gmail.com; ORCIDiD: https://orcid.org/0000-0003-3561-1955
bProfessor Emeritus, DDS, MSc, PhD; e-mail: trpapad@dent.uoa.gr; ORCIDiD: https://orcid.org/0000-0002-9533-6249
cAssociate Professor, DDS, MSc, Dr. Dent; e-mail: nicpolis@dent.uoa.gr; ORCIDiD: https://orcid.org/0000-0001-7373-3414
dProfessor, DDS, MSc, Dr. Dent; e-mail: hkarkaz@dent.uoa.gr; ORCIDiD: https://orcid.org/0000-0002-9003-2852
eProfessor, DDS, MScD, Dr. Dent; e-mail: grepolyz@dent.uoa.gr; ORCIDiD: https://orcid.org/0000-0003-0032-039X

 

Abstract

Introduction The production procedures, including impressions, introduce errors affecting the passivity of fit. A completely digital workflow is possible nowadays because of the intraoral scanners (IOS). This study aimed to evaluate the effect of the impression technique (conventional versus digital) and the screw tightening sequence on the marginal discrepancy (MD) of implant-supported bars.
Methodology This laboratory study was conducted on a simulated Kennedy class II edentulous maxilla with three parallel implants in the edentulous quartile. The closed tray technique with a-silicon (CTM) and the intraoral scanning with the I-Tero™ system (IOS) were compared and three bars were manufactured from each technique. Depending on the screw tightening sequence (A11 and A17) 4 groups were created with 6 samples each. The MD was examined implementing 24 negative replicas, which were sectioned and studied under a stereomicroscope. The Horizontal Discrepancy (BHD), Vertical Discrepancy (BVD) and Conical Discrepancy (BCD) of the bar were calculated on the means of the measurements of the horizontal, the vertical and the conical MD respectively. The descriptive statistics, normality tests, one-way ANOVA (a=.05) and post-hoc Tukey’s tests were run and the graphs were draw with SPSS.
Results There was a significant effect (P<.05) of the impression technique combined with the screw tightening sequence on all variables. The post-hoc Tukey’s tests revealed significant differences between all groups except from those of the same impression technique only for the BHD (P<.05).
Conclusion In this study all groups resulted in marginal discrepancies. The closed tray impression technique gave better results.

Keywords

CAD/CAM; Digital Image Analysis; Implant-Supported Bar; Intraoral Scanner; Marginal Fit.he accuracy of definitive casts created from traditional and digital implant-level impressions: an in vitro comparative study. Int J Oral Maxillofac Implants. 2015;30(1):102-109. doi: 10.11607/jomi.3592. PMID: 25615919.

Full text links CrossRef PubMed Google Scholar Scopus WoS

Gracis S, Michalakis K, Vigolo P, et al. Internal vs. external connections for abutments/reconstructions: a systematic review. Clin Oral Implants Res. 2012;23 Suppl 6:202-216. doi: 10.1111/j.1600-0501.2012.02556.x. PMID: 23062143.

Full text links CrossRef PubMed Google Scholar Scopus WoS

Lee HJ, Lim YJ, Kim CW, et al. Accuracy of a proposed implant impression technique using abutments and metal framework. J Adv Prosthodont. 2010;2(1):25-31. doi: 10.4047/jap.2010.2.1.25. PMID: 21165184; PMCID: PMC2984514.

Full text links CrossRef PubMed Google Scholar Scopus WoS

Leeson D. The digital factory in both the modern dental lab and clinic. Dent Mater. 2020;36(1):43-52. doi: 10.1016/j.dental.2019.10.010. PMID: 31727448.

Full text links CrossRef PubMed Google Scholar Scopus WoS

van der Meer WJ, Andriessen FS, Wismeijer D, Ren Y. Application of intra-oral dental scanners in the digital workflow of implantology. PLoS One. 2012;7(8):e43312. doi: 10.1371/journal.pone.0043312. PMID: 22937030; PMCID: PMC3425565.

Full text links CrossRef PubMed Google Scholar Scopus WoS

Huang R, Liu Y, Huang B, et al. Improved scanning accuracy with newly designed scan bodies: An in vitro study comparing digital versus conventional impression techniques for complete-arch implant rehabilitation. Clin Oral Implants Res. 2020;31(7):625-633. doi: 10.1111/clr.13598. PMID: 32181919.

Full text links CrossRef PubMed Google Scholar Scopus WoS

Andriessen FS, Rijkens DR, van der Meer WJ, Wismeijer DW. Applicability and accuracy of an intraoral scanner for scanning multiple implants in edentulous mandibles: a pilot study. J Prosthet Dent. 2014;111(3):186-194. doi: 10.1016/j.prosdent.2013.07.010. PMID: 24210732.

Full text links CrossRef PubMed Google Scholar Scopus WoS

Patzelt SB, Emmanouilidi A, Stampf S, et al. Accuracy of full-arch scans using intraoral scanners. Clin Oral Investig. 2014;18(6):1687-1694. doi: 10.1007/s00784-013-1132-y. PMID: 24240949.

Full text links CrossRef PubMed Google Scholar

Kim SY, Kim MJ, Han JS, et al. Accuracy of dies captured by an intraoral digital impression system using parallel confocal imaging. Int J Prosthodont. 2013;26(2):161-163. doi: 10.11607/ijp.3014. PMID: 23476911.

Full text links CrossRef PubMed Google Scholar Scopus WoS

Keul C, Güth JF. Accuracy of full-arch digital impressions: an in vitro and in vivo comparison. Clin Oral Investig. 2020;24(2):735-745. doi: 10.1007/s00784-019-02965-2. PMID: 31134345.

Full text links CrossRef PubMed Google Scholar Scopus WoS

Menini M, Setti P, Pera F, et al. Accuracy of multi-unit implant impression: traditional techniques versus a digital procedure. Clin Oral Investig. 2018;22(3):1253-1262. doi: 10.1007/s00784-017-2217-9. PMID: 28965251.

Full text links CrossRef PubMed Google Scholar Scopus WoS

Faul F, Erdfelder E, Lang AG, Buchner A. G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods. 2007;39(2):175-191. doi: 10.3758/bf03193146. PMID: 17695343.

PubMed Google Scholar Scopus WoS

Faul F, Erdfelder E, Buchner A, Lang AG. Statistical power analyses using G*Power 3.1: tests for correlation and regression analyses. Behav Res Methods. 2009;41(4):1149-1160. doi: 10.3758/BRM.41.4.1149. PMID: 19897823.

CrossRef PubMed Google Scholar

 

 

Figures are shown in pdf document 

(read pdf) |